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Prologue

… followed by 4 acts
&

an epilogue



State-of-the-Art Conceptual Model for
Radiative Transfer in Clouds

• To compute radiative fluxes inside most Global Climate Models
(GCMs) radiation modules, as well as cloud system resolving
models (CSRMs) and even cloud process models.

• To compute radiances, hence physical cloud properties, in
operational cloud remote sensing schemes at NASA and Co,
irrespective of pixel size.

This is a cloud!



Reality:



What we* compute
versus

what we* measure
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3D RT Problem Space

GCM radiation
parameterization

schemes

Large-footprint
(or beam-filling)

problems

“domain” scales:
unresolved
structure
[sums over x]

3D radiative
heating/cooling
rates in CSRMs

“Pixel/column
adjacency”
problems

“pixel” scales:
resolved
structure
[samples of x]

Energetics
using fluxes

[sums over Ω]

Diagnostics
using radiances
[samples of Ω]

  

� 

I!(x,
r 
" )

f (!)#(x)r(
r 
" )

I3RC I3RC-Approx

RAMI ICRCCM



ACT 1

“Good enough” 3D RT



In 3D RT, consider the inner
and outer aspect ratios.

Geometrically
Correct!

Transport of
photon transport codes
by “heritage” …



1D Independent Column Approximation (ICA)
versus 3D Transport and Diffusion

I3RC “Case 1” square-wave cloud: 0.25 km thick, alternating τ = 2,18 every 0.25 km.

ϖ0 = 1



I3RC “Case 1” square-wave cloud: 0.25 km thick, alternating τ = 2,18 every 0.25 km.

ϖ0 = 1 ϖ0 = 0.99

1D Independent Column Approximation (ICA)
versus 3D Transport and Diffusion



• Joint work with Mike Hall (CCS-2)
• Ideal for stratus layers
• Multi-grid solver, parallelizing code

I3RC “Case 1” square-wave cloud: 0.25 km thick,
alternating τ = 2,18 every 0.25 km.
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3D RT in O(N) FLOPs:
Computational Diffusion Theory



3D RT in Closed-Form Expressions:
Adjoint Perturbation Theory

• Joint work with Igor Polonsky (now at CSU)
• Uses spatial Green functions for

Homogeneous Plane-Parallel (HPP) clouds
• Perturbation could depart from

– ICA, rather than HPP model (done)
– computational 3D diffusion model

(cf. previous slide)

I3RC “Case 2” Cloud from MMCR+
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ACT 2

Passive from above,
active from below



Context, c. 1995



Context, c. 1995

“No (pixel) scale left behind!”

“Sasha, trust me!”



Wide-Angle Imaging Lidar (WAIL)

54°

Remote Ultra Low
Light Imaging
(RULLI),
a specialty detector
by LANL/ISR-2



Wide-Angle Imaging
Lidar (WAIL-2):
New detector

(gated/intensified CCD)



mm-Radar
Reflectivity
(MMCR)

Cloud Boundaries

NASA’s Airborne
“THOR” Lidar

Micro-Pulse Lidar (MPL)

Cloud Optical
Depth

2-channel µwave
radiometer (MWR)

Ceilometer (VCL)

Wide-Angle Imaging Lidar (WAIL)
validation campaign at ARM SGP site

WAIL

53°

Polonsky,
Davis, Love

… captures and analyses the space-time
Green function, in green light!



Wish us luck …



ACT 3

RT in 3+1 dimensions,
using a steady source



Differential absorption
spectroscopy at
high resolution
From: Min Q.-L., L. C. Harrison, P. Kiedron, J. Berndt,
and E. Joseph, 2004: A high-resolution oxygen A-band
and water vapor band spectrometer, J. Geophys. Res.,
109, D02202, doi:10.1029/2003JD003540.
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Time-dependent diffusion theory for
transmitted fluxes:

Plane-parallel cloud model

From asymptotic theory:
(i.e., scaling arguments based on random walk statistics)
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H: cloud thickness
τ:  cloud optical thickness (σH = H / mean-free-path)
g:  asymmetry factor of scattering phase function
     (i.e, <cosθs> = 2π∫  cosθsp(cosθs) sinθsdθs = 0.75 – 0.85)



Exact diffusion theory vs. Monte Carlo?

Davis, A. B., and A. Marshak, 2002: Space-time characteristics of light transmitted by
dense clouds, A Green function analysis, J. Atmos. Sci., 59, 2713-2727.
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Ground-based
oxygen spectroscopy

Pfeilsticker, K., 1999: First Geometrical Pathlength Distribution Measurements of Skylight 

Using the Oxygen A-band Absorption Technique - II, Derivation of the Lévy-Index for Skylight 

Transmitted by Mid-Latitude Clouds, J. Geophys. Res., 104, 4101-4116. 
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Min, Q.-L., L. C. Harrison, and E. E. Clothiaux, 2001: Joint statistics of photon path length and 

cloud optical depth: Case studies, J. Geophys. Res., 106, 7375-7385. 

Cases near the α=2 line are very
overcast, and those near α=1 are for
sparse clouds, as expected from model.

A single cloud layer (α=2) with
variable thickness H ∝ the slope of
the linear path vs optical depth plot.

A complex cloud situation (1<α<2)
with multi-layers, some broken;
power-laws in α−1 will fit the data.
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From 1st to 2nd Moments …
KNMI 35 GHz cloud radar U. Heidelberg O2 A-band spectrometer

(2nd generation)

Scholl, T., K. Pfeilsticker, A. B. Davis, H. Klein Baltink, S.
Crewell, U. Löhnert, C. Simmer, J. Meywerk, and M. Quante,
2006:
Path Length Distributions for Solar Photons Under Cloudy
Skies: Comparison of Measured First and Second Moments with
Predictions from Classical and Anomalous Diffusion Theories,
J. Geophys. Res., vol. 111, D12211-12226.

“Theory” curves combine Davis
and Marshak (1997) + (2002).



Anomalous Transport Model

Davis, A. B., 2006: Effective Propagation Kernels in Structured Media with Broad Spatial Correlations, Illustration
with Large-Scale Transport of Solar Photons Through Cloudy Atmospheres,
in Computational Methods in Transport – Granlibakken 2004 (Lecture Notes in Computational Science and
Engineering), F. Graziani (Ed.), Springer-Verlag, New York (NY), pp. 85-140.
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1. Build GCM SW transport 
schemes (1D-type RT models for
averages over large domains)

• Conceptualize unresolved variability
– Cloud fraction, cloud aspect ratio
– Internal variability?
– Spatial correlations, including layer-to-layer overlap
– Need other parameters?

• Make reasonable statistical assumptions
– Fractals and power-laws
– Exponentials, lognormals, Gamma, etc.

• Use judicious approximations in the RT
• Write code … and verify it!



2. Test GCM SW transport 
schemes with detailed 3D RT

• Need 3D clouds from observations
– Could use CSRM output [OK for starts]
– Better to use imagers and profilers

• Ground-based: ARM sites
• Space-based: A-train, especially CloudSat/Calipso

– Best to use ARM Volume-imaging Array (AVA)
• Need confidence in extracting optical properties

• Need verified 3D RT codes
– full cloudy column capability
– use to “assimilate” available data

• Compare 3D (spatially averaged) and 1D-type RT
model outputs for given inputs



3. Validation of GCM grid-scale SW
transport schemes, 
a.k.a. “closure” experiments

• Need new observations directly related to the
domain-average HR profile predictions (i.e., output
of new/improved SW transport codes) 
… at selected λ’s

• Focus on process (physics) of absorption by
interstitial gases under complex cloudy conditions
– use O2 A-band: known amount and known cross-section,

but unknown path distribution
– from below (ARM), within (UAVs), and above (OCO) …
– fully stress the 1D-type RT model: use scenarios with

multiple and/or broken cloud layers



ACT 4

Seeing clouds from both sides …



Passive 3D cloud remote sensing in VNIR, 1

Take wavelength where there is no absorption,
hence R(eflectance) + T(ransmittance) = 1

H

Mean Free Path l
“Asymmetry” factor g = <cosβ> ≈ 0.85 

“Transport” MFP lt = l/(1–g)
“Optical” Depth τ = H/l >> 1
“Rescaled” OD = H/lt = (1–g)τ 

T = 1/[1+(1–g)τ/2]

R

β

Schuster, A., 1905: Radiation through a foggy atmosphere, Astrophys. J., 21, 1-22.



Passive 3D cloud remote sensing in VNIR, 2

IR/IT ! R/T = (1!g)"/2#

… to satellite

IR ! R $ F0/%

IT ! T $ F0/%

from Sun … 

R

T 
!  ?   !

(" = 2rc& = Axis along '0/Mean-Free-Path)

F0 = 1

2rc

'0

Davis, A. B., 2002: Cloud remote sensing with sideways-looks: Theory and first results using
Multispectral Thermal Imager (MTI) data, in S.P.I.E. Proceedings, vol. 4725: “Algorithms and
Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII,” Eds. S. S. Shen and P.
E. Lewis, S.P.I.E. Publications, Bellingham (Wa), pp. 397-405.

Unpublished generalizations with Mathematica and with Igor Polonsky (LANL PDF, now CSU).



Passive 3D cloud remote sensing in VNIR, 3

Cloud Adjacency Effects, Simulated
• 3D clouds by

wavelet-like
“tdMAP” model
(Benassi et al.,
1999, 2004)

• 3D radiances by
SHDOM code
(Evans, 1998)

• Surface albedo assumed
uniform at 0.1

• Appear to be as much as
50% more near clouds

• Depends on wavelength,
hence confusion in spectral
matching

Will be used in
validation of
new τ retrieval
scheme
(Polonsky et al.,
in preparation)



Passive 3D cloud remote sensing in VNIR, 4
• ≈100 years after Schuster (1905), ≈50 after

Chandrasekhar-Wick DOM in 1D, and ≈25
after 1D asymptotic theory … a simple 3D
RT solution for cloud remote sensing.
Three applications areas:
– Hi-res imagery

• Landsat, ASTER, MTI (DOE/NNSA)
• ARM’s Whole Sky Imagers?

– Cloud-capable atmospheric 
compensation for remote 
sensing of surface properties

– Effects of unresolved structure



Epilogue



Research Capabilities
• Atmospheric radiative transfer in or in the

presence of clouds (i.e., dense structured media)
– Three-dimensional, for diagnostics & for energetics
– Time-dependent, as needed
– Theoretical (computational + analytical) and observational

• Remote sensing techniques
– Passive and active, mostly in the optical (solar) spectrum
– Physics-based multi-pixel exploitation methods
– Instrument development

• Concepts from nonlinear geophysics
– Multi-scale (wavelets, fractals, multifractals, etc.)
– Stochastic modeling (cloud structure, etc.)
– Model calibration, verification & (process of) validation



Questions?

 



… for some answers:

(appeared in 2005)



RT as a Linear Boltzmann Problem
• Iλ(ct,x,Ω) is “radiance” ~ f(t,x,p) for Boltzmann’s mesoscopic equation

– t is time and ct is total path (but we’ll consider stationary sources here)
– x is position
– Ω is direction of propagation (from p/p)
– λ is wavelength (from h/p = ch/E, E = hν)

• σ(x) is the given “extinction” field = cross-section × (fluctuating) density
– σ(x) is the collision probability per unit of length along a beam (we

assume geometric optics)
– σs(x) ≤ σ(x) is the collision probability per unit of length for a scattering

(rather than an absorption)
– x ∈  M ⊆ R3, the optical medium

• fv(x), x ∈  M, and fs(x), x ∈  ∂M, are the bulk and boundary emission rates.
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When σ(x) is a function …

I. 〈T0(s)〉 = 〈Pr{step>s}〉 is exponential if and only if σ(x) ≡ const.

II. Mean-Free-Path (MFP) is minimal (and =1/σ) if σ(x) ≡ const.

III. 〈T0(s)〉 is sub-exponential, even if the real MFP is used (rather than 1/〈σ〉).
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Davis, A. B., and A. Marshak, Photon propagation in heterogeneous optical media
with spatial correlations: Enhanced mean-free-paths and wider-than-exponential
free-path distributions, J. Quant. Spectrosc. Rad. Transf., 84, 3-34 (2004).

Empirical necessity to define a density
(“1-point scale independence”):

for r and r' in some large enough range.

� 

! (r, x)=

d

! (r', x)



Synthetic scale-invariant media that are turbulence-like



Expectations for Earth’s cloudy atmosphere, 1:
Barker et al.’s (1996) LandSat Data Analysis

Barker, H. W.,  B. A. Wielicki, and L. Parker, 1996: A parameterization for computing grid-

averaged solar fluxes for inhomogeneous marine boundary layer clouds - Part 2, Validation using 

satellite data, J. Atmos. Sci., 53, 2304-2316. 

From:

Gamma distributions capture many cloud optical depth scenarios.



Expectations for Earth’s cloudy atmosphere, 2:
Effective transport kernels are power-law!
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Assuming s = H (thickness) in previous slide:



New 1D RT models that include
the impact of 3D cloudiness
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 Izen = πI(z=H,µ=+1)/F0

 Inad = πI(z=0,µ=−1)/F0

Given:

Find:




